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I. Abstract: 

 

This report presents a study conducted within the Cochrane Ecological Institute (CEI) reserve, 

aimed at developing acoustic analysis algorithms capable of identifying bird species from 

audio recordings. The context highlights the importance of monitoring bird populations as 

sensitive environmental indicators. Three main approaches were explored: the extraction of 

Mel-Frequency Cepstral Coefficients (MFCC), Short-Time Fourier Transform (STFT), and 

log-Mel spectrograms combined with the EfficientNetV2 model. These algorithms were 

trained on a dataset of 20 bird species present within the reserve. Results show that the 

MFCC-based model achieved the highest overall accuracy (85%), while the EfficientNetV2 

model stood out for its robustness in handling complex and imbalanced data. Class imbalance 

management, data augmentation, and challenges related to multi-species detection are 

discussed. This work opens up new perspectives for automated bird song recognition in the 

context of biodiversity conservation. 

 

Résumé: 

 

Ce rapport présente une étude menée au sein de la réserve du Cochrane Ecological Institute 

(CEI), visant à développer des algorithmes d’analyse acoustique capables d’identifier les 

espèces d’oiseaux à partir d’enregistrements sonores. Le contexte souligne l’importance du 

suivi des populations d’oiseaux en tant qu’indicateurs environnementaux sensibles. Trois 

approches principales ont été explorées : l’extraction des coefficients cepstraux de fréquences 

Mel (MFCC), la transformation de Fourier à court terme (STFT) et les spectrogrammes log-

Mel combinés au modèle EfficientNetV2. Ces algorithmes ont été entraînés sur un ensemble 

de données de 20 espèces d’oiseaux présents au sein de la réserve. Les résultats montrent que 

le modèle basé sur les MFCC offre la meilleure précision globale (85 %), tandis que le 

modèle EfficientNetV2 s’est distingué par sa robustesse dans un contexte de données 

complexes et déséquilibrées. La gestion des déséquilibres entre classes, l’enrichissement des 

données et les défis liés à l’identification de plusieurs espèces simultanément sont discutés. 

Ces travaux ouvrent des perspectives pour la reconnaissance automatisée des chants d’oiseaux 

dans un cadre de conservation de la biodiversité. 
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I 

VI. INTRODUCTION 

A. Context 

Birds are essential indicators of environmental change. Their rapid response to habitat 

loss and climate shifts enables early detection of ecosystem threats. By studying bird 

populations, scientists can assess ecosystem health and evaluate conservation efforts.Beyond 

their ecological value, birds contribute to key processes such as pollination, seed dispersal, 

and insect control, making their protection vital for biodiversity. However, human-induced 

pressures like habitat modification and climate change threaten bird populations(Canada, 

2012). 

This challenge highlights the importance of modern technologies for biodiversity monitoring. 

This is especially relevant in Alberta, Canada, where diverse bird species serve as critical 

bioindicators. Understanding their presence and behavior helps assess ecosystem health, 

reinforcing the need for efficient monitoring tools (Kaggle, 2023; Kaggle, 2024; Tang et 

al.2024). 

Distinguishing between bird songs and calls is often challenging, especially for those 

unfamiliar with avian wildlife. However, audio recordings serve as essential tools for species 

identification, particularly for biologists studying, managing, and protecting bird 

populations.Yet, the vast diversity of vocalizations makes species recognition difficult. 

Manual classification methods require significant effort and are limited by an expert’s ability 

to process large datasets. Additionally, these approaches are prone to human errors, 

complicating and slowing down conservation efforts. 

To address these challenges, deep learning plays a key role in bird monitoring and 

demonstrates high performance in the field of vocal recognition. By combining autonomous 

recording units (ARUs) with recognition software, it is possible to analyze complex acoustic 

environments(Brooker et al., 2020). These automated tools enable more accurate and scalable 

bird species recognition, thereby contributing to the conservation of avian biodiversity.  
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reliable model training. To achieve this, we designed three deep learning models using 

different feature extraction techniques: MFCC, STFT, and log-Mel spectrogramscombined 

with a pre-trained EfficientNetV2-B0 model. 

 

These models were then evaluated based on accuracy, execution speed, and F1-score. 

Additional analyses included accuracy and loss evolution curves, as well as confusion 

matrices to assess classification performance. 

 

The report is structured as follows: in the first section, we will present the materials and 

methodology used, followed by the results obtained and their analysis in the third section. 

Finally, we will discuss the implications of our results and potential directions for future 

research in the conclusion. 
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B. Presentation of the Reserve 

The Cochrane Ecological Institute (CEI) is located in Alberta, Western Canada, just 

north of the town of Cochrane (Figure 1). Covering over 60 hectares, the reserve consists 

of diverse biomes, including forests, grasslands, and wetlands (Figure 2)(Cochrane Ecological 

Institute, n.d.). 

Dedicated to wildlife reintroduction and conservation, the CEI plays a crucial role in multiple 

research projects. It has deployed drones equipped with AI-powered cameras to monitor and 

identify mammals. Additionally, it oversees projects leveraging acoustic recordings to track 

mammal and bird populations. 

The region's rich biodiversity makes it an ideal location for avian acoustic research. 

According to the Merlin Bird ID app from the Cornell Lab, 169 bird species have been 

recorded in Rocky View No. 44, AB, particularly during September and October (Cornell Lab 

of Ornithology, n.d.). The variety of habitats and the high species diversityprovide a unique 

environment for studying bird recognition through audio. 

VII. MATERIALS AND METHODS 

A. Collectingsoundrecordings 

In this study, the dataset was created from acoustic data collected using acoustic 

recording units (ARUs): Song Meter SM4 Acoustic Recorder and Song Meter Mini Bat 2 

from Wildlife Acoustics Inc. These devices were installed at approximately 2 meters in height 

on tree trunks at each of the four designated sites (Figure 4 and 5) within the reserve. These 

sites were selected as they represent different biomes, thereby increasing the chances of 

detecting a diverse range of species attracted to various habitats. 

Each ARU was equipped with an omnidirectional microphone, allowing ambient sounds to be 

recorded in all directions. Recordings were made with a sampling rate of 16000 Hz and 16-bit 

encoding. No high-pass or band-pass filters were applied to preserve the full range of sound 

frequencies present in the environment. 

The ARUs were programmed to record sounds for 5 minutes every 30 minutes over a period 

of 4 consecutive days, at multiple intervals: on September 21 and October 3, 2024. These 
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4. MFCC Algorithm 

The first classification algorithm is based on the extraction of Mel-Frequency Cepstral 

Coefficients (MFCC), a set of features widely used in speech recognition and acoustic 

analysis tasks. These coefficients represent the spectral and perceptual information of audio 

signals, inspired by the human perception of sound frequencies(Stowell &Plumbley,2014; 

Das et al., 2023; Rezaul, 2024; Deng et al., 2020). 

The algorithm was developed in Python (version 3.12.6) using the Visual Studio Code 

(VSCode) editor (Figure 7). The bird song audio files, in WAV format, were first 

preprocessed with the ‘Librosa’ library to extract 60 MFCCs per sample. These coefficients 

were then averaged over the time axis to reduce variability between recordings of the same 

species and produce a more stable and compact feature vector. 

Normalization of the MFCCs was performed using ‘StandardScaler’, ensuring that all 

variables are on a similar scale, which improves the model's convergence during training. 

The bird species labels were encoded using a One-Hot encoder, converting categorical data 

into numerical representations suitable for multiclass classification(Scikit-Learn Developers, 

n.d.). The dataset was split into two sets: 80% for training and 20% for validation, to 

evaluate the model's performance on unseen data during learning. 
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The classification model is based on a deep neural network with three main layers (Figure 9): 

1. Flatten Layer: This layer transforms the input MFCCs, initially multidimensional, 

into a one-dimensional vector that can be processed by the subsequent dense layers. 

2. Dense Layers: Two dense layers with 512 and 256 neurons, respectively, are used to 

capture complex relationships in the data. Each dense layer is followed by batch 

normalization to stabilize learning and accelerate convergence, as well as a dropout 

mechanism (with a rate of 0.3) to reduce the risk of overfitting. 

3. Output Layer: The output layer, also a dense layer, applies a Softmax activation 

function to predict the probability of belonging to each bird species class. 

The model training is optimized using the Adam algorithm with a learning rate of 0.0005. The 

categorical ‘crossentropy loss’ function is used to maximize the probability of correctly 

predicting species labels. 

To address the class imbalance issue, class weights are calculated and integrated to 

compensate for the underrepresentation of rare species in the training data. Additionally, early 

stopping and best model saving mechanisms are employed to halt training as soon as the 

performance on the validation set begins to degrade. 

The model is evaluated on a validation set, where its ability to generalize to unseen data is 

measured. The prediction accuracy is compared to the actual labels to estimate performance in 

a real-world context. 

5. Data cleaning 

One of the factors that most significantly influences the accuracy of an algorithm is the 

quality of the dataset. In our study, the first step to improve accuracy was to manually review 

the audio files one by one.  

We first verified whether the bird sound corresponded correctly to its assigned class. Some 

recordings were removed due to poor quality or the presence of background noise. Many 

audio files were also discarded following the incorrect detection of sound events by 

Kaleidoscope Pro. 

Moreover, some classes had a significantly higher number of detections compared to our 

target of approximately 500 audio samples per class (Figure 10). 
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These classes contained up to 2000 recordings, mainly due to the high abundance of these 

species in the reserve and their particularly noisy behavior. To avoid excessive class 

imbalance, we reduced the number of audio samples in these categories. 

The initial dataset consisted of 15 species, totaling 8 146 recordings. After this initial cleaning 

process, the number of audio samples was reduced to 3 478. These cleaning steps improved 

the overall quality of the data. 

6. Data augmentation  

Another essential factor for audio classification is the number of samples available for 

each species (Rezaul, 2024). To further enrich our dataset, recordings made on July 10 and 

25, with the same settings as before, were integrated. 

These new recordings underwent the same processing steps as the initial data: clustering by 

Kaleidoscope Pro, species identification via Merlin Bird ID, and manual verification of the 

audio files. Additionally, the July period allowed for the detection and inclusion of new 

species present during that time. 

Following this step, the dataset consisted of 20 bird species, with a total of 5340 recordings. 

The integration of these additional data aimed to maximize the quantity and diversity of 

information available to train the algorithm, thereby improving its performance. 

The updated accuracy of the MFCC algorithm after data cleaning and data augmentation was 

83%, compared to the initial accuracy of 66% with the previous dataset. 

7. Manage class imbalances with MFCC algorithm  

In classification algorithms, class imbalance can affect overall performance by biasing 

the model in favor of overrepresented classes. During the development of our dataset, some 

species were overrepresented due to their natural abundance and noisy vocal behavior, while 

others were underrepresented because they were less common within the reserve or were rare 

species. 

A study on the performance of the MFCC algorithm was conducted by modifying the dataset 

to determine the best configuration to use. 
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0.83 

 

↘� 0.82 
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Table 1: Comparison of MFCC algorithm accuracy based on the dataset 
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First, tests were carried out by removing audio samples from overrepresented species, namely 

the American Robin, Black-billed Magpie, and Black-capped Chickadee. Further tests were 

performed by excluding underrepresented species, including the Red Crossbill, Northern 

Flicker, White-breasted Nuthatch, Brown Creeper, and Ruby-crowned Kinglet, as well as by 

combining both approaches (Table 1). 

Ultimately, it was decided to remove 200 audio samples from the overrepresented species to 

limit their influence during training without losing a significant amount of information. The 

underrepresented species were retained, despite slightly reducing the model's accuracy, as 

they accurately reflect the diversity of the studied environment. 

The final dataset comprises 20 species, with a total of 4698 audio samples (Figure 11). 

8. STFT algorithm 

The classification algorithm based on Short-Time Fourier Transform (STFT) relies on 

the analysis of spectrograms, which represent the frequency variations of the audio signal 

over time.  

The STFT is particularly suited for analyzing complex sounds, such as bird songs, as it 

provides a detailed spectral view of the signals. Unlike MFCCs, which focus on perceptual 

aspects by reducing dimensionality, spectrograms retain fine resolution in both frequency and 

time. This makes them ideal for capturing the spatiotemporal variations specific to each 

species(Xie et al., 2022; Puget, 2021). 

For each audio file, spectrograms are generated and then converted to a logarithmic scale 

using the ‘amplitude_to_db’function from ‘Librosa’. This conversion enhances the 

representation of amplitude variations. The spectrograms are then resized to ensure uniform 

dimensions, facilitating their use as input in a convolutional neural network (CNN). 

The CNN model is composed of the following elements (Figure 12): 

1. Two convolutional layers (Conv2D): These extract characteristic patterns from the 

spectrograms, capturing local relationships in the spatiotemporal data. 

2. Two max-pooling layers: These reduce the dimensionality while preserving essential 

information, making the model more robust and less prone to overfitting. 
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3. A fully connected Dense layer with 128 neurons: This layer interprets the features 

extracted by the convolutional layers. 

4. A Dropout regularization layer: This layer, with an appropriate dropout rate, helps 

prevent overfitting. 

5. An output Dense layer with Softmax activation: This layer generates the 

probabilities for each bird species class. 

The algorithm is trained using the ‘Adam’ optimizer and the categorical ‘crossentropy loss’ 

function, with the dataset split into training (80%) and validation (20%) sets. To optimize the 

training process, callbacks such as early stopping and model checkpoint are used.  

This STFT-based approach retains rich spectral information, which is particularly useful for 

distinguishing bird species with similar songs. It provides a complementary perspective to 

MFCCs by emphasizing detailed spatiotemporal characteristics. 

9. Log-Melspectrograms and EfficientNetV2 algorithm 

Pre-trained models, such as EfficientNetV2, provide a powerful foundation for 

classification tasks by leveraging knowledge gained from large datasets. They reduce the need 

for task-specific data, accelerate training, and enhance performance, particularly for complex 

applications such as bird sound classification(Das et al., 2023).  

These models have demonstrated their effectiveness in competitions such as BirdCLEF and in 

various audio classification algorithms (Kaggle, 2024). 

In this algorithm, the bird song audio files are transformed into log-Mel spectrograms, a 

representation suited to the human perception of sounds. Unlike traditional spectrograms, log-

Mel places more emphasis on lower frequencies—characteristic of bird songs—while 

minimizing the influence of very faint or loud sounds(Das et al., 2023). 

These spectrograms are resized to 224x224 pixels to meet the input requirements of the 

EfficientNetV2 model, a convolutional neural network pre-trained on ImageNet, which is an 

image dataset. This resizing allows the model to leverage the complex visual features it has 

already learned. 
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To enhance the model’s robustness, data augmentation techniques inspired by ‘SpecAugment’ 

are applied(Das et al, 2023). These augmentations introduce artificial variations, such as time 

and frequency masking, simulating natural recording conditions.  

During training, only the final layers of the EfficientNetV2 model are retrained (fine-tuning), 

while the deeper layers remain frozen to retain the knowledge acquired during pre-training. 

A custom head is added to the top of the model, consisting of the following elements: 

1. A Dense layer with 256 neurons, followed by a Dropout mechanism to prevent 

overfitting. 

2. An output Dense layer with ‘Softmax’ activation, which predicts the probabilities 

for the 20 bird species classes. 

The training process is optimized using the categorical ‘crossentropy loss’ function, the 

‘Adam’ optimizer, and a learning rate of 0.0005.  

Mechanisms such as ‘Earlystopping’ and ‘ModelCheckpoint’ are implemented to prevent 

overfitting and ensure optimal generalization. 

This model is evaluated on a validation set to assess its ability to generalize and classify bird 

species based on their songs. By combining log-Mel spectrograms with EfficientNetV2, this 

model provides a robust solution, even with a limited dataset. 
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VIII. RESULTS 

We evaluated three classification models: MFCC, STFT, and log-Mel spectrograms 

combined with a pre-trained EfficientNetV2 model. Their performances are detailed in Tables 

2, 3, and 4, highlighting key differences in accuracy, recall, and F1-score. 

The MFCC model shows promising results, with an overall accuracy of 85%, a recall of 

86%, and an average F1-score of 85%. However, difficulties persist in detecting certain 

species despite having enough samples, such as the Red-breasted Nuthatch, with 41 samples 

used for testing. This difficulty may be because the audio for this species often contains noisy 

environments with overlapping bird sounds. We can assume that the algorithm might 

prioritize other species due to their higher frequencies or dominance in the audio. The Brown 

Creeper, Red Crossbill, Ruby-crowned Kinglet, and White-breasted Nuthatch were not 

recognized at all, which negatively affects the overall performance. 

The STFT model, on the other hand, achieves an average accuracy of 71%, a recall of 60%, 

and an F1-score of 51%. Although some species, such as the Green-winged Teal, are 

detected with perfect accuracy (100%), possibly because only one audio sample was used for 

testing, several other species, including the Brown Creeper and Ruby-crowned Kinglet, are 

not recognized at all, affecting the overall performance similarly to the MFCC model. 

The log-Mel model combined with EfficientNetV2 shows generally better performance, 

with an average accuracy of 78%, a recall of 63%, and an F1-score of 57%. Despite strong 

results for some species, such as the American Crow and Mallard, there are still difficulties in 

classifying species like the Brown Creeper and Ruby-crowned Kinglet, limiting the overall 

model performance once again. 

These results highlight the importance of audio representations and model architectures in the 

classification of bird songs. In terms of overall performance, the MFCC model outperforms 

the others, followed by the log-Mel model with EfficientNetV2, while the STFT model shows 

more modest results, although it demonstrates high accuracy for some specific species. 

However, the results also show significant variations depending on the species: some have 

accuracies close to 1, while others achieve an accuracy of 0. 
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The performance variations observed across models are largely explained by data 

imbalance in the training and testing sets. For instance, species such as the Green-winged 

Teal achieve perfect accuracy with the MFCC and STFT models, likely because only one 

sample was available for this species. In contrast, species like the Brown Creeper and Ruby-

crowned Kinglet, which both had an accuracy of 0%, underscore the limitations of these 

algorithms in correctly identifying species with low sample counts or acoustic similarities to 

other birds. 

Data imbalance significantly affects these results, as highly represented species tend to be 

better recognized. In the EfficientNetV2 model with log-Mel features, species such as 

the American Crow (0.92 accuracy) and Blue Jay (0.85 accuracy) exhibit strong recognition 

rates, reflecting their dominance in the dataset. Conversely, the Pine Siskin and Red 

Crossbill display low classification performance, likely due to a lack of training 

samples or complex acousticfeatures that the models struggle to differentiate. 

Another important limitation in our model comparison is that the log-Mel model was not 

trained using the same 80%-20% training-validation split as the MFCC and STFT 

models. This inconsistency could influence the reported performance differences and should 

be considered when analyzing the results. 

Overall, while some models perform well for majority or acoustically distinctive species, their 

effectiveness remains limited by dataset imbalance, highlighting the need for improved 

sampling strategies. 

A. Accuracy 

Model performance was assessed by analyzing training and validation accuracy curves. 

The MFCC-based model demonstrated strong performance, with the training curve reaching 

around 90% after 15 epochs. However, the validation accuracy stagnates around 85%, and a 

gradual gap between the two curves is observed, suggesting the onset of overfitting. This 

phenomenon could be mitigated by adding regularization mechanisms such as dropout or by 

using early stopping. 

In contrast, the STFT-based model shows training and validation curves converging around 

70%, with no apparent overfitting. 
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Accuracy Curve of the Log-Mel spectrograms and EfficientNetV2 Algorithm (left) and 

Loss (right) 

However, the overall performance remains lower than that of the MFCC model, suggesting 

that this method captures the relevant features of bird sounds less effectively. 

Finally, the log-Mel-based model using EfficientNetV2 stands out for its balanced 

performance: the training and validation curves almost perfectly converge around 80%.This 

result indicates optimal generalization and better robustness in capturing the complex features 

of the data, making this model particularly suitable in a context where the data is imbalanced. 

Thus, the log-Mel-based model with EfficientNetV2 proves to be the most promising for bird 

sound classification. 

B. Loss 

The analysis of the loss curves highlights differences in the learning performance of the 

three models. The MFCC-based model shows a training loss that steadily decreases to a very 

low value (~0.2), while the validation loss stabilizes around 0.6 after 10 epochs, with some 

fluctuations. This indicates the onset of overfitting, suggesting that regularization 

mechanisms, such as dropout or early stopping, could be beneficial. 

The STFT-based model reaches near-zero training loss within the first few epochs, with a 

stable validation loss at a low level. This rapid drop may reflect overfitting to the training data 

and early saturation, possibly due to the limited complexity of features captured by the STFT. 

In contrast, the model using log-Mel features with EfficientNetV2 shows both training and 

validation losses that decrease steadily and converge around 0.6, without significant gaps or 

oscillations. This convergence reflects excellent generalization, demonstrating that this model 

is particularly well-suited for bird sound classification. 

These results highlight the robustness and effectiveness of the log-Mel approach combined 

with EfficientNetV2 in the context of complex and imbalanced data. 

1. Confusion Matrix 

The confusion matrices of the three models highlight significant differences in their ability 

to correctly classify the sounds of the 20 bird species. The MFCC-based model demonstrates 
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and underrepresented classes, such as Dark-eyed Junco and Mountain Chickadee, with fewer 

off-diagonal confusions. This can be explained by the powerful combination of log-Mel 

features, which capture fine spectral and perceptual information, and the advanced 

EfficientNetV2 architecture, optimized for classifying spectrogram-derived images.This 

combination enables the model to generalize better and handle data imbalances more 

effectively. 

The MFCC-based model performs well for majority classes and the STFT model offers some 

stability, the log-Mel model with EfficientNetV2 stands out as the most suitable for this task. 

It balances accuracy and generalization while reducing confusions for underrepresented 

classes, making it particularly robust for scenarios involving complex and imbalanced data. 

2. Decisionmaking 

The choice of the algorithm depends on the specific classification objectives, data 

constraints, and available resources. Among the three tested models, the MFCC-based model 

offers the highest overall accuracy, particularly for majority classes, while requiring relatively 

modest computational resources. This model is ideal for contexts where simplicity and 

execution speed are paramount. 
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IX. DISCUSSION 

The results obtained in this study show that deep learning methods applied to the 

classification of bird songs offer promising performance while highlighting several challenges 

inherent to this type of task. The combination of MFCCs, STFT, and log-Mel spectrograms 

with neural network architectures, such as EfficientNetV2, allowed us to evaluate the 

advantages and limitations of these approaches (Das et al, 2023). 

Among the three tested algorithms, the MFCC-based model proved to be the most effective in 

terms of overall accuracy (85%), demonstrating a better ability to capture the essential 

acoustic features of bird songs. However, this method remains limited by a reduced ability to 

differentiate underrepresented species or species recorded in noisy environments, such as the 

Red-breasted Nuthatch or the Ruby-crowned Kinglet. 

The STFT-based model, although effective for certain specific species, showed overall lower 

performance (average accuracy of 71% and F1-score of 51%). This result can be attributed to 

the difficulty of fully exploiting complex spatiotemporal information, combined with 

increased sensitivity to class imbalance. 

In contrast, the model combining log-Mel spectrograms and EfficientNetV2 demonstrated 

greater robustness to spectral and temporal variations, largely thanks to the pre-trained feature 

extractor, as previously observed by Das et al (2023). Despite slightly lower performance 

compared to the MFCC model (average accuracy of 78%), this approach stands out for its 

ability to generalize across complex and diverse data. 

Our analyses also highlighted the critical importance of data quality and balance (Rezaul, 

2024; Stowell &Plumbley, 2014). Data cleaning and augmentation steps significantly 

improved the algorithms' performance, particularly for the MFCC model, whose accuracy 

increased from 66% to 83%. However, class imbalance remains a major challenge, especially 

for rare or underrepresented species (Rezaul, 2024). Adjustments such as reducing the number 

of recordings for overrepresented species while preserving rare species helped to limit biases 

without altering the ecological diversity of the dataset. These results underscore the 

importance of tailored strategies to manage these imbalances. 

Moreover, although automated deep learning-based approaches have proven effective, they 

require a large volume of high-quality data to achieve optimal performance (Zhang et al., 
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2018). The algorithms used in this study showed limitations in contexts of low class 

representativity or significant noise in the recordings. Additional techniques, such as synthetic 

data augmentation or the use of alternative acoustic representations (alternatives to STFT), 

could be explored to further improve performance (Das et al, 2023).Furthermore, other 

improvements could have been implemented, such as adding class weights to the STFT and 

log-Mel models with EfficientNetV2, as well as using a common training set (80%-20%) to 

better compare our algorithms. 

The main limitation of our algorithms is that they detect only one bird species at a time. It 

would be relevant to design a model capable of detecting multiple species simultaneously 

(Springer et al., 2013).When an audio recording contains multiple bird species, the algorithm 

arbitrarily selects one species without explicitly defining the underlying criteria. This choice 

could be influenced by factors such as the dominant frequency or the prevalence of certain 

species in the training set. 

 

X. Conclusion 

This study implemented deep learning approaches to classify the songs of 20 bird species 

within the Cochrane Ecological Institute reserve. By using three main techniques—MFCC, 

STFT, and log-Mel spectrograms combined with EfficientNetV2—we compared their 

performance in terms of accuracy, generalization, and the ability to handle class imbalances. 

The MFCC-based model stood out for its overall accuracy, demonstrating its effectiveness in 

capturing essential acoustic features. The EfficientNetV2 model, on the other hand, showed 

better generalization due to its pre-trained architecture, while the STFT model presented more 

limited results. The data cleaning and augmentation steps played a key role in improving the 

quality and diversity of the dataset, thereby increasing the models' accuracy. 

These results highlight the importance of data quality, managing class imbalances, and 

tailoring methods to the specificities of acoustic recordings. By combining robust approaches 

with appropriate data preparation techniques, this study paves the way for effective automated 

tools for bird song recognition. 
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Future work could focus on enabling multi-species recognition from single recordings, real-

time audio processing, and integrating environmental data to enhance model performance. 

These advancements would further support biodiversity monitoring and conservation efforts 

globally. 
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