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l. Abstract:

This report presents a study conducted within the Cochrane Ecological Institute (CEI) reserve,
aimed at developing acoustic analysis algorithms capable of identifying bird species from
audio recordings. The context highlights the importance of monitoring bird populations as
sensitive environmental indicators. Three main approaches were explored: the extraction of
Mel-Frequency Cepstral Coefficients (MFCC), Short-Time Fourier Transform (STFT), and
log-Mel spectrograms combined with the EfficientNetV2 model. These algorithms were
trained on a dataset of 20 bird species present within the reserve. Results show that the
MFCC-based model achieved the highest overall accuracy (85%), while the EfficientNetV2
model stood out for its robustness in handling complex and imbalanced data. Class imbalance
management, data augmentation, and challenges related to multi-species detection are
discussed. This work opens up new perspectives for automated bird song recognition in the

context of biodiversity conservation.

Résumeé:

Ce rapport présente une étude menée au sein de la réserve du Cochrane Ecological Institute
(CEI), visant a développer des algorithmes d’analyse acoustique capables d’identifier les
especes d’oiseaux a partir d’enregistrements sonores. Le contexte souligne I’importance du
suivi des populations d’oiseaux en tant qu’indicateurs environnementaux sensibles. Trois
approches principales ont été explorées : 1’extraction des coefficients cepstraux de fréquences
Mel (MFCC), la transformation de Fourier a court terme (STFT) et les spectrogrammes log-
Mel combinés au modele EfficientNetV2. Ces algorithmes ont été entrainés sur un ensemble
de données de 20 espéces d’oiseaux présents au sein de la réserve. Les résultats montrent que
le modele basé sur les MFCC offre la meilleure précision globale (85 %), tandis que le
mode¢le EfficientNetV2 s’est distingué par sa robustesse dans un contexte de données
complexes et déséquilibrées. La gestion des déséquilibres entre classes, 1’enrichissement des
données et les défis liés a I’identification de plusieurs espéces simultanément sont discutés.
Ces travaux ouvrent des perspectives pour la reconnaissance automatisée des chants d’oiseaux

dans un cadre de conservation de la biodiversité.
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GLOSSARY

Al Atrtificial Intelligence

ARU: Audio Recording Unit

CEI: Cochrane Ecological Institute

HMM: Hidden Markov Model

MFCC: Mel-Frequency Cepstral Coefficients
ML: Machine Learning

STFT:Short-Time Fourier Transform

WAYV: Waveform Audio File Format
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VL.  INTRODUCTION

A. Context

Birds are essential indicators of environmental change. Their rapid response to habitat
loss and climate shifts enables early detection of ecosystem threats. By studying bird
populations, scientists can assess ecosystem health and evaluate conservation efforts.Beyond
their ecological value, birds contribute to key processes such as pollination, seed dispersal,
and insect control, making their protection vital for biodiversity. However, human-induced
pressures like habitat modification and climate change threaten bird populations(Canada,

2012).

This challenge highlights the importance of modern technologies for biodiversity monitoring.
This is especially relevant in Alberta, Canada, where diverse bird species serve as critical
bioindicators. Understanding their presence and behavior helps assess ecosystem health,
reinforcing the need for efficient monitoring tools (Kaggle, 2023; Kaggle, 2024; Tang et
al.2024).

Distinguishing between bird songs and calls is often challenging, especially for those
unfamiliar with avian wildlife. However, audio recordings serve as essential tools for species
identification, particularly for biologists studying, managing, and protecting bird
populations.Yet, the vast diversity of vocalizations makes species recognition difficult.
Manual classification methods require significant effort and are limited by an expert’s ability
to process large datasets. Additionally, these approaches are prone to human errors,

complicating and slowing down conservation efforts.

To address these challenges, deep learning plays a key role in bird monitoring and
demonstrates high performance in the field of vocal recognition. By combining autonomous
recording units (ARUs) with recognition software, it is possible to analyze complex acoustic
environments(Brooker et al., 2020). These automated tools enable more accurate and scalable

bird species recognition, thereby contributing to the conservation of avian biodiversity.



Nevertheless, challenges remain, particularly in the precise extraction of relevant information
from acoustic data.Moreover, these algorithms, although highly effective, require a significant

amount of unique data, which can be a challenge for endangered species.
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Figure 1:Satellite view of the CEI (CEI)
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Figure 2:Map of the different biomes that make up the CEI reserve in 2015 (CEI)

In recent years, significant research has focused on developing new algorithmic models to
enhance bird sound recognition. Among the most effective techniques are log-Mel
spectrograms and deep  neural networks, which have improved classification
accuracy.Convolutional neural networks (CNNs) trained on Mel spectrograms or Mel-
frequency cepstral coefficients (MFCCs) have shown remarkable efficiency (Das et al., 2023).
These methods have been validated in multiple studies, including those by Stowell and

Plumbley (2014), as well as in major competitions like BirdCLEF 2024.

Regarding alternatives to short-time Fourier transform (STFT), other approaches, such as
linear prediction (Fox, 2008), have been explored. However, Mel spectrograms and their
variants generally dominate classification applications due to their ability to effectively
represent the perceptual features of sounds. The BirdCLEF 2024 competition particularly
highlighted advances in this field. The winning model achieved an impressive 96% accuracy

by using an architecture based on EfficientNetV2 (Kaggle, 2024).

This study aims to develop an artificial intelligence model for bird species recognition

based on a dataset collected within the CEI reserve.

A total of 20 bird species were identified from 4,698 audio recordings gathered in June,

September, and October. One of the key challenges was addressing class imbalance to ensure



reliable model training. To achieve this, we designed three deep learning models using
different feature extraction techniques: MFCC, STFT, and log-Mel spectrogramscombined
with a pre-trained EfficientNetV2-B(0 model.

These models were then evaluated based on accuracy, execution speed, and F1-score.
Additional analyses included accuracy and loss evolution curves, as well as confusion

matrices to assess classification performance.

The report is structured as follows: in the first section, we will present the materials and
methodology used, followed by the results obtained and their analysis in the third section.
Finally, we will discuss the implications of our results and potential directions for future

research in the conclusion.

10



JJ
&
e
Collecting sound
recordings
o T J
4 N\
Clustering
. T J
4 N
Dataset : 15 bird species
(8 000 audio files)
Creation of the MFCC
algorithm:
accuracy = 0.66
- J
Data cleaning : 15 bird species
(3 478 audio files)
Data augmentation : 20 bird
species (5 340 audio files)
. J

£

(’
Decision Making
T /
\
Performance
Evaluation
T j
\
Creation of the Log-Mel
algorithm with the
EfficientNetV2BO0 the
pre-training model
4

f

Creation of the STFT algorithm
accuracy = 0.71

/

T

\
Accuracy of the MFCC

algorithm = 0.83

t

Dataset experiment to manage
class imbalances with the
MFCC algorithm

.

Final dataset : 20 bird species
(4 698 audio files)

/

Figure 3:Key steps throughout the project

11



B. Presentation of the Reserve
The Cochrane Ecological Institute (CEI) is located in Alberta, Western Canada, just

north of the town of Cochrane (Figure 1). Covering over 60 hectares, the reserve consists
of diverse biomes, including forests, grasslands, and wetlands (Figure 2)(Cochrane Ecological

Institute, n.d.).

Dedicated to wildlife reintroduction and conservation, the CEI plays a crucial role in multiple
research projects. It has deployed drones equipped with Al-powered cameras to monitor and
identify mammals. Additionally, it oversees projects leveraging acoustic recordings to track

mammal and bird populations.

The region's rich biodiversity makes it an ideal location for avian acoustic research.
According to the Merlin Bird ID app from the Cornell Lab, 169 bird species have been
recorded in Rocky View No. 44, AB, particularly during September and October (Cornell Lab
of Ornithology, n.d.). The variety of habitats and the high species diversityprovide a unique

environment for studying bird recognition through audio.

VIl. MATERIALS AND METHODS

A. Collectingsoundrecordings

In this study, the dataset was created from acoustic data collected using acoustic
recording units (ARUs): Song Meter SM4 Acoustic Recorder and Song Meter Mini Bat 2
from Wildlife Acoustics Inc. These devices were installed at approximately 2 meters in height
on tree trunks at each of the four designated sites (Figure 4 and 5) within the reserve. These
sites were selected as they represent different biomes, thereby increasing the chances of

detecting a diverse range of species attracted to various habitats.

Each ARU was equipped with an omnidirectional microphone, allowing ambient sounds to be
recorded in all directions. Recordings were made with a sampling rate of 16000 Hz and 16-bit
encoding. No high-pass or band-pass filters were applied to preserve the full range of sound

frequencies present in the environment.

The ARUs were programmed to record sounds for 5 minutes every 30 minutes over a period

of 4 consecutive days, at multiple intervals: on September 21 and October 3, 2024. These

12 3



dates correspond to a period of heightened bird activity (e.g., migration or breeding). The

audio files were subsequently retrieved in WAV format for analysis.

Figure 4:0n the left, SONG METER SM4 ACOUSTIC RECORDER, and on the right,
SONG METER MINI BAT 2 AA (Wildlife Acoustics)

13



Figure 5:Positions of ARUs within the CEI reserve (Google map)

B. Clustering

1. Kaleidoscope pro

Kaleidoscope Pro (Wildlife Acoustics Inc, Maynard, USA) is an application that uses
Hidden Markov Models (HMM) to group syllables into clusters based on their spatiotemporal
features and similarity (Brooker et al., 2020). Each detection is assigned to a cluster with a

score assessing its relevance to the cluster's center (Wildlife Acoustics Inc, n.d.).

The detection parameters were set for a frequency range of 0 to 20 kHz, a minimum duration
of 0.1 seconds, a maximum duration of 15 seconds, and a maximum interval between
syllables of 0.5 seconds. The other settings remained as default. The program generates
a cluster.kes file and an Excel file listing the audio files grouped by cluster with their

characteristics (frequency, duration, etc.).

14



Kaleidoscope Pro sorts files into clusters without identifying them. Therefore, manual
verification is required to associate each cluster with a species. The validated files are

exported in WAV format to ensure consistency in the algorithm's input data.

During the analysis with Kaleidoscope Pro, some files had a modified frequency from 16000
Hz to 97000 Hz. A Python algorithm was developed to convert them back to 16000 Hz—a

rate suitable for bird sounds and more efficient in terms of storage space.

2. Merlin Bird ID

Merlin Bird ID (Cornell Lab of Ornithology, Ithaca, USA) is a mobile bird recognition
application that uses convolutional neural networks to identify species from photos or sounds.
Relying on a database of over 6000 species, it assigns a match score based on the similarity
between the submitted recording and the training data. It also provides information on species'

habitats, behaviors, and geographical distributions(Cornell Lab of Ornithology, n.d.).

In this study, the assignment of clusters obtained with Kaleidoscope Pro was performed using

Merlin Bird ID.

However, this identification may be limited when recordings are too short, have low sound

intensity, or contain excessive background noise, making the analysis less accurate.

dataset/

— audio/
I— bluejay/

Figure 6: Example of the algorithm's database structure
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oy TensorFlow version: 2.16.2
Keras version: 3.5.0
NumPy version: 1.26.4

Figure 7: Excerpt from the Jupvter Notebook showing the versions of the imported

libraries

Poids des classes calculés :
American Crow: 0.87

American Robin: 0.41
Black-billed Magpie: 0.37
Black—-capped Chickadee: @.37
Blue Jay: 0.54

Boreal Chickadee: 1.42

Brown Creeper: 77.95

Common Raven: 2.85

Dark-eyed Junco: 0.78
Golden-crowned Kinglet: 0.66
Green-winged Teal: 38.98
House Finch: 1.97

Mallard: 0.64

Mountain Chickadee: ©.55
Northern Flicker: 8.66

Pine Siskin: 2.25

Red Crossbill: 46.77
Red-breasted Nuthatch: 1.38
Ruby-crowned Kinglet: 38.98
White-breasted Nuthatch: 17.99

Figure 8: Class weights in the MFCC algorithm

3. Database Format

The database was organized into two main directories for a clear structure (Figure 6).
The first directory, titled "audio," contains individual subfolders for each identified species.
These subfolders group all the audio files associated with the corresponding species,

facilitating their access and management.

The second directory, named "Metadata," centralizes descriptive information extracted from
the audio files using Kaleidoscope Pro. These metadata include details such as frequency,
duration, and call characteristics, enabling a systematic and comprehensive analysis of the

recordings.
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4, MFCC Algorithm

The first classification algorithm is based on the extraction of Mel-Frequency Cepstral
Coefficients (MFCC), a set of features widely used in speech recognition and acoustic
analysis tasks. These coefficients represent the spectral and perceptual information of audio
signals, inspired by the human perception of sound frequencies(Stowell &Plumbley,2014;
Das et al., 2023; Rezaul, 2024; Deng et al., 2020).

The algorithm was developed in Python (version 3.12.6) using the Visual Studio Code
(VSCode) editor (Figure 7). The bird song audio files, in WAV format, were first
preprocessed with the ‘Librosa’ library to extract 60 MFCCs per sample. These coefficients
were then averaged over the time axis to reduce variability between recordings of the same

species and produce a more stable and compact feature vector.

Normalization of the MFCCs was performed using ‘StandardScaler’, ensuring that all

variables are on a similar scale, which improves the model's convergence during training.

The bird species labels were encoded using a One-Hot encoder, converting categorical data
into numerical representations suitable for multiclass classification(Scikit-Learn Developers,
n.d.). The dataset was split into two sets: 80% for training and 20% for validation, to

evaluate the model's performance on unseen data during learning.

17



Layer (type) Output Shape Param #

flatten_1 (Flatten) ( , 6@) e
dense_3 (Dense) ( , 512) 31,232
batch_normalization_2 ( + 512) 2,048
(BatchNormalization)

dropout_2 (Dropout) ( s 512) ]
dense_4 (Dense) ( , 256) 131,328
batch_normalization_3 ( , 256) 1,024
(BatchNormalization)

dropout_3 (Dropout) ( , 256) ]
dense_5 (Dense) ( , 20) 5,140

Total params: 509,246 (1.94 MB)

Trainable params: 169,236 (661.08 KB)

Non-trainable params: 1,536 (6.00 KB)

Optimizer params: 338,474 (1.29 MB)

Figure 9:Summary of the MFCC algorithm and neural network lavers
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The classification model is based on a deep neural network with three main layers (Figure 9):

1. Flatten Layer: This layer transforms the input MFCCs, initially multidimensional,
into a one-dimensional vector that can be processed by the subsequent dense layers.

2. Dense Layers: Two dense layers with 512 and 256 neurons, respectively, are used to
capture complex relationships in the data. Each dense layer is followed by batch
normalization to stabilize learning and accelerate convergence, as well as a dropout
mechanism (with a rate of 0.3) to reduce the risk of overfitting.

3. Output Layer: The output layer, also a dense layer, applies a Softmax activation

function to predict the probability of belonging to each bird species class.

The model training is optimized using the Adam algorithm with a learning rate of 0.0005. The
categorical ‘crossentropy loss’ function is used to maximize the probability of correctly

predicting species labels.

To address the class imbalance issue, class weights are calculated and integrated to
compensate for the underrepresentation of rare species in the training data. Additionally, early
stopping and best model saving mechanisms are employed to halt training as soon as the

performance on the validation set begins to degrade.

The model is evaluated on a validation set, where its ability to generalize to unseen data is
measured. The prediction accuracy is compared to the actual labels to estimate performance in

a real-world context.

5. Data cleaning
One of the factors that most significantly influences the accuracy of an algorithm is the
quality of the dataset. In our study, the first step to improve accuracy was to manually review

the audio files one by one.

We first verified whether the bird sound corresponded correctly to its assigned class. Some
recordings were removed due to poor quality or the presence of background noise. Many
audio files were also discarded following the incorrect detection of sound events by

Kaleidoscope Pro.

Moreover, some classes had a significantly higher number of detections compared to our

target of approximately 500 audio samples per class (Figure 10).
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Number of samples collected for different species

4500
4000 3841
3500
3000
2500
2000
1659
1500
1000
558
500 62 428 68
] a  EHNE = .
: H = S - —
American Crow  Black-billed Black-capped Blue Jay Boreal Chickadee Brown Creeper Common Raven Dark-eyed Junco Green-winged NorthernFlicker  PineSiskin Red Crossbill Red-breasted  Ruby-crowned
Magpie Chickadee Teal Nuthatch Kinglet
Figure 10: Uncleaned and incomplete dataset consisting of 15 species and approximately
8146 audio samples
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Figure 11:Final dataset with 4 698 audio samples and 20 classes
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These classes contained up to 2000 recordings, mainly due to the high abundance of these
species in the reserve and their particularly noisy behavior. To avoid excessive class

imbalance, we reduced the number of audio samples in these categories.

The initial dataset consisted of 15 species, totaling 8 146 recordings. After this initial cleaning
process, the number of audio samples was reduced to 3 478. These cleaning steps improved

the overall quality of the data.

6. Data augmentation

Another essential factor for audio classification is the number of samples available for
each species (Rezaul, 2024). To further enrich our dataset, recordings made on July 10 and

25, with the same settings as before, were integrated.

These new recordings underwent the same processing steps as the initial data: clustering by
Kaleidoscope Pro, species identification via Merlin Bird ID, and manual verification of the
audio files. Additionally, the July period allowed for the detection and inclusion of new

species present during that time.

Following this step, the dataset consisted of 20 bird species, with a total of 5340 recordings.
The integration of these additional data aimed to maximize the quantity and diversity of

information available to train the algorithm, thereby improving its performance.

The updated accuracy of the MFCC algorithm after data cleaning and data augmentation was

83%, compared to the initial accuracy of 66% with the previous dataset.

7. Manage class imbalances with MFCC algorithm
In classification algorithms, class imbalance can affect overall performance by biasing
the model in favor of overrepresented classes. During the development of our dataset, some
species were overrepresented due to their natural abundance and noisy vocal behavior, while
others were underrepresented because they were less common within the reserve or were rare

species.

A study on the performance of the MFCC algorithm was conducted by modifying the dataset

to determine the best configuration to use.
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Unmod | 200 fewer 300 fewer 400 fewer By By removing
ifiedDa audio audio audio removingu | underrepresented
taset samples for samples for samples for | nderrepres species and 200
each each each entedspeci | audio samples from
overrepresen | overrepresent | overrepresent es overrepresented
ted species ed species ed species species
Accuracy
of the
MECC 0.83 N[ 0.82 N[ 0.80 N[ 0.79 N[0 .85 N[ 0.84
Algorithm

Table 1: Comparison of MFCC algorithm accuracy based on the dataset
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First, tests were carried out by removing audio samples from overrepresented species, namely
the American Robin, Black-billed Magpie, and Black-capped Chickadee. Further tests were
performed by excluding underrepresented species, including the Red Crossbill, Northern
Flicker, White-breasted Nuthatch, Brown Creeper, and Ruby-crowned Kinglet, as well as by
combining both approaches (Table 1).

Ultimately, it was decided to remove 200 audio samples from the overrepresented species to
limit their influence during training without losing a significant amount of information. The
underrepresented species were retained, despite slightly reducing the model's accuracy, as

they accurately reflect the diversity of the studied environment.
The final dataset comprises 20 species, with a total of 4698 audio samples (Figure 11).

8. STFT algorithm

The classification algorithm based on Short-Time Fourier Transform (STFT) relies on
the analysis of spectrograms, which represent the frequency variations of the audio signal

over time.

The STFT is particularly suited for analyzing complex sounds, such as bird songs, as it
provides a detailed spectral view of the signals. Unlike MFCCs, which focus on perceptual
aspects by reducing dimensionality, spectrograms retain fine resolution in both frequency and
time. This makes them ideal for capturing the spatiotemporal variations specific to each

species(Xie et al., 2022; Puget, 2021).

For each audio file, spectrograms are generated and then converted to a logarithmic scale
using the ‘amplitude to db’function from ‘Librosa’. This conversion enhances the
representation of amplitude variations. The spectrograms are then resized to ensure uniform

dimensions, facilitating their use as input in a convolutional neural network (CNN).
The CNN model is composed of the following elements (Figure 12):

1. Two convolutional layers (Conv2D): These extract characteristic patterns from the
spectrograms, capturing local relationships in the spatiotemporal data.
2. Two max-pooling layers: These reduce the dimensionality while preserving essential

information, making the model more robust and less prone to overfitting.
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Layer (type) Output Shape Param #
conv2d (Conv2D) ( , 1023, 214, 32) 320
max_pooling2d (MaxPooling2D) ( ; 511 - 107; 32) 0
conv2d_1 (Conv2D) ( , 509, 105, 64) 18,496
max_pooling2d_1 (MaxPooling2D) ( , 254, 52, 64) 0
flatten (Flatten) ( , 845312) 0
dense (Dense) ( , 128) 108,200,064
dropout (Dropout) ( , 128) (1]
dense_1 (Dense) ( , 20) 2,580

Total params: 108,221,460 (412.83 MB)

Trainable params: 108,221,460 (412.83 MB)

Non-trainable params: @ (0.00 B)

Figure 12: Summary of the STFT algorithm and neural network layers
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3. A fully connected Dense layer with 128 neurons: This layer interprets the features
extracted by the convolutional layers.

4. A Dropout regularization layer: This layer, with an appropriate dropout rate, helps
prevent overfitting.

5. An output Dense layer with Softmax activation: This layer generates the

probabilities for each bird species class.

The algorithm is trained using the ‘Adam’ optimizer and the categorical ‘crossentropy loss’
function, with the dataset split into training (80%) and validation (20%) sets. To optimize the

training process, callbacks such as early stopping and model checkpoint are used.

This STFT-based approach retains rich spectral information, which is particularly useful for
distinguishing bird species with similar songs. It provides a complementary perspective to

MFCCs by emphasizing detailed spatiotemporal characteristics.

9. Log-Melspectrograms and EfficientNetV2 algorithm

Pre-trained models, such as EfficientNetV2, provide a powerful foundation for
classification tasks by leveraging knowledge gained from large datasets. They reduce the need
for task-specific data, accelerate training, and enhance performance, particularly for complex

applications such as bird sound classification(Das et al., 2023).

These models have demonstrated their effectiveness in competitions such as BirdCLEF and in

various audio classification algorithms (Kaggle, 2024).

In this algorithm, the bird song audio files are transformed into log-Mel spectrograms, a
representation suited to the human perception of sounds. Unlike traditional spectrograms, log-
Mel places more emphasis on lower frequencies—characteristic of bird songs—while

minimizing the influence of very faint or loud sounds(Das et al., 2023).

These spectrograms are resized to 224x224 pixels to meet the input requirements of the
EfficientNetV2 model, a convolutional neural network pre-trained on ImageNet, which is an
image dataset. This resizing allows the model to leverage the complex visual features it has

already learned.
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Model: “functional™

Layer (type) Output Shape Param #
input_layer_1 (InputLayer) ( 224 1398, o) ]
lambda (Lambda) ( ; 224, 224, 3) 0
efficientnetv2-b@ (Functional) ( vy . 1288) 5,919,312
global_average_pooling2d ( , 1280) ]
(GlobalAveragePooling2D)

dense (Dense) ( , 256) 327,936
dropout (Dropout) ( , 256) 5}
dense_1 (Dense) ( , 20) 5,140

Total params: 8,554,222 (32.63 MB)

Trainable params: 1,150,916 (4.39 MB)

Non-trainable params: 5,101,472 (19.46 MB)

Optimizer params: 2,301,834 (8.78 MB)

Figure 13:Summary of the Log-Mel spectrograms and EfficientNetV?2 algorithm and

neural network layers
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To enhance the model’s robustness, data augmentation techniques inspired by ‘SpecAugment’
are applied(Das et al, 2023). These augmentations introduce artificial variations, such as time

and frequency masking, simulating natural recording conditions.

During training, only the final layers of the EfficientNetV2 model are retrained (fine-tuning),

while the deeper layers remain frozen to retain the knowledge acquired during pre-training.

A custom head is added to the top of the model, consisting of the following elements:

1. A Dense layer with 256 neurons, followed by a Dropout mechanism to prevent
overfitting.
2. An output Dense layer with ‘Softmax’ activation, which predicts the probabilities

for the 20 bird species classes.

The training process is optimized using the categorical ‘crossentropy loss’ function, the

‘Adam’ optimizer, and a learning rate of 0.0005.

Mechanisms such as ‘Earlystopping’ and ‘ModelCheckpoint’ are implemented to prevent

overfitting and ensure optimal generalization.

This model is evaluated on a validation set to assess its ability to generalize and classify bird
species based on their songs. By combining log-Mel spectrograms with EfficientNetV2, this

model provides a robust solution, even with a limited dataset.
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precision recall fl-score support

American Crow 0.81 0.76 0.78 50

American Robin 9.94 9.99 9.97 121
Black-billed Magpie 0.90 0.98 0.93 131
Black-capped Chickadee 0.90 9.92 0.91 130
Blue Jay 0.93 9.91 0.92 87

Boreal Chickadee 0.84 0.76 0.80 42

Brown Creeper 0.00 0.00 8.00 2

Common Raven 0.95 0.75 0.84 24

Dark-eyed Junco 0.82 9.65 0.73 43
Golden—crowned Kinglet 0.79 0.88 0.84 69
Green-winged Teal 1.00 1.00 1.00 1
House Finch 0.76 0.71 0.73 31

Mallard 8.98 8.93 8.92 58

Mauntain Chickadee 0.76 0.81 .78 73
Northern Flicker 1.00 0.67 0.80 6

Pine Siskin 0.50 9.55 0.52 20

Red Crossbill 0.00 0.00 0.00 2
Red-kreasted Nuthatch 0.68 9.63 0.66 41
Ruby-crowned Kinglet 0.00 0.00 0.00 1
White-breasted Nuthatch 0.00 0.00 0.00 4
accuracy 0.86 936

macro avg 0.67 9.65 0.66 936

weighted avg @.85 0.86 8.85 936

Table 2: MFCC Model Classification Report for Bird Species Identification

precision recall fl-score support

American Crow 0.80 8.66 8.73 50
American Robin .79 0.84 0.82 121
Black-billed Magpie 0.75 8.92 .83 131
Black-capped Chickadee 0.69 0.94 .79 130
Blue Jay B.86 8.70 8.77 87

Boreal Chickadee .74 8.55 0.63 42

Brown Creeper 0.00 0.00 0.00 2

Common Raven 1.00 8.21 8.34 24

Dark-eyed Junco 8.48 .51 8.49 43
Golden-crowned Kinglet 0.61 0.62 9.61 69
Green-winged Teal 1.00 1.00 1.00 1
House Finch 0.85 0.55 0.67 31

Mallard 8.72 9.95 0.82 58

Mounzain Chickadee 0.61 0.75 0.67 73
Northern Flicker 1.00 0.33 0.50 6

Pine Siskin 1.00 0.30 0.46 20

Red Crossbill 0.00 0.00 0.00 2
Red-breasted Nuthatch 0.18 0.05 0.08 41
Ruby-crowned Kinglet 0.00 0.00 0.00 1
White-breasted Nuthatch 0.00 0.00 0.00 4
accuracy 0.71 936

macro avg 0.60 0.49 08.51 936

weighted avg 8.71 9.71 0.69 936

Table 3: STFT Model Classification Report for Bird Species Identification
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VIII. RESULTS

We evaluated three classification models: MFCC, STFT, and log-Mel spectrograms
combined with a pre-trained EfficientNetV2 model. Their performances are detailed in Tables

2, 3, and 4, highlighting key differences in accuracy, recall, and F1-score.

The MFCC model shows promising results, with an overall accuracy of 85%, a recall of
86%, and an average Fl-score of 85%. However, difficulties persist in detecting certain
species despite having enough samples, such as the Red-breasted Nuthatch, with 41 samples
used for testing. This difficulty may be because the audio for this species often contains noisy
environments with overlapping bird sounds. We can assume that the algorithm might
prioritize other species due to their higher frequencies or dominance in the audio. The Brown
Creeper, Red Crossbill, Ruby-crowned Kinglet, and White-breasted Nuthatch were not

recognized at all, which negatively affects the overall performance.

The STFT model, on the other hand, achieves an average accuracy of 71%, a recall of 60%,
and an Fl-score of 51%. Although some species, such as the Green-winged Teal, are
detected with perfect accuracy (100%), possibly because only one audio sample was used for
testing, several other species, including the Brown Creeper and Ruby-crowned Kinglet, are

not recognized at all, affecting the overall performance similarly to the MFCC model.

The log-Mel model combined with EfficientNetV2 shows generally better performance,
with an average accuracy of 78%, a recall of 63%, and an F1-score of 57%. Despite strong
results for some species, such as the American Crow and Mallard, there are still difficulties in
classifying species like the Brown Creeper and Ruby-crowned Kinglet, limiting the overall

model performance once again.

These results highlight the importance of audio representations and model architectures in the
classification of bird songs. In terms of overall performance, the MFCC model outperforms
the others, followed by the log-Mel model with EfficientNetV2, while the STFT model shows

more modest results, although it demonstrates high accuracy for some specific species.

However, the results also show significant variations depending on the species: some have

accuracies close to 1, while others achieve an accuracy of 0.
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F1-Score

precision recall fl-score support

American Crow 0.92 0.82 0.86 119

American Robin 0.77 0.90 0.83 220
Black-billed Magpie 0.80 0.91 0.85 246
Black-capped Chickadee 0.80 0.91 0.85 247
Blue Jay 0.85 0.76 0.80 175

Boreal Chickadee 0.74 0.55 0.63 56

Brown Creeper 0.00 0.00 0.00 1

Common Raven 0.59 0.55 0.57 31

Dark-eyed Junco 0.68 0.68 0.68 145
Golden-crowned Kinglet 0.83 0.78 0.80 139
Green-winged Teal 1.00 0.25 0.40 4
House Finch 0.92 0.53 0.68 43

Mallard 0.86 0.89 0.87 147

Mountain Chickadee 0.64 0.66 0.65 166
Northern Flicker 0.71 0.56 0.62 9

Pine Siskin 0.65 0.70 0.68 37

Red Crossbill 0.00 0.00 0.00 3
Red-breasted Nuthatch 0.80 0.49 0.61 75
Ruby-crowned Kinglet 0.00 0.00 0.00 2
White-breasted Nuthatch 0.00 0.00 0.00 6
accuracy 0.78 1871

macro avg 0.63 0.55 0.57 1871

weighted avg .78 0.78 0.78 1871

Table 4: Log-Melspectrograms and EfficientNetV2Model Classification Report for Bird

Comparison of F1-Scores by Species and Model
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Figure 14: Comparison Graph of F1-Scores Across Different Models
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The performance variations observed across models are largely explained by data
imbalance in the training and testing sets. For instance, species such as the Green-winged
Teal achieve perfect accuracy with the MFCC and STFT models, likely because only one
sample was available for this species. In contrast, species like the Brown Creeper and Ruby-
crowned Kinglet, which both had an accuracy of 0%, underscore the limitations of these
algorithms in correctly identifying species with low sample counts or acoustic similarities to

other birds.

Data imbalance significantly affects these results, as highly represented species tend to be
better recognized. In the EfficientNetV2 model with log-Mel features, species such as
the American Crow (0.92 accuracy) and Blue Jay (0.85 accuracy) exhibit strong recognition
rates, reflecting their dominance in the dataset. Conversely, the Pine Siskin and Red
Crossbill display low classification performance, likely due to alack of training

samples or complex acousticfeatures that the models struggle to differentiate.

Another important limitation in our model comparison is that the log-Mel model was not
trained using the same 80%-20% training-validation split as the MFCC and STFT
models. This inconsistency could influence the reported performance differences and should

be considered when analyzing the results.

Overall, while some models perform well for majority or acoustically distinctive species, their
effectiveness remains limited by dataset imbalance, highlighting the need for improved

sampling strategies.

A. Accuracy

Model performance was assessed by analyzing training and validation accuracy curves.

The MFCC-based model demonstrated strong performance, with the training curve reaching
around 90% after 15 epochs. However, the validation accuracy stagnates around 85%, and a
gradual gap between the two curves is observed, suggesting the onset of overfitting. This
phenomenon could be mitigated by adding regularization mechanisms such as dropout or by

using early stopping.

In contrast, the STFT-based model shows training and validation curves converging around

70%, with no apparent overfitting.
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Accuracy Curve of the Log-Mel spectrograms and EfficientNetV2 Algorithm (left) and
Loss (right)

However, the overall performance remains lower than that of the MFCC model, suggesting

that this method captures the relevant features of bird sounds less effectively.

Finally, the log-Mel-based model using EfficientNetV2 stands out for its balanced
performance: the training and validation curves almost perfectly converge around 80%.This
result indicates optimal generalization and better robustness in capturing the complex features
of the data, making this model particularly suitable in a context where the data is imbalanced.
Thus, the log-Mel-based model with EfficientNetV2 proves to be the most promising for bird

sound classification.

B. Loss

The analysis of the loss curves highlights differences in the learning performance of the
three models. The MFCC-based model shows a training loss that steadily decreases to a very
low value (~0.2), while the validation loss stabilizes around 0.6 after 10 epochs, with some
fluctuations. This indicates the onset of overfitting, suggesting that regularization

mechanisms, such as dropout or early stopping, could be beneficial.

The STFT-based model reaches near-zero training loss within the first few epochs, with a
stable validation loss at a low level. This rapid drop may reflect overfitting to the training data

and early saturation, possibly due to the limited complexity of features captured by the STFT.

In contrast, the model using log-Mel features with EfficientNetV2 shows both training and
validation losses that decrease steadily and converge around 0.6, without significant gaps or
oscillations. This convergence reflects excellent generalization, demonstrating that this model

is particularly well-suited for bird sound classification.

These results highlight the robustness and effectiveness of the log-Mel approach combined

with EfficientNetV2 in the context of complex and imbalanced data.

1. Confusion Matrix

The confusion matrices of the three models highlight significant differences in their ability

to correctly classify the sounds of the 20 bird species. The MFCC-based model demonstrates
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good performance for majority classes, such as the Black-billed Magpie and Black-capped
Chickadee, with 128 and 120 correct predictions along the diagonal, respectively.

Confusion Matrix

American Crow - 38 [} i 3 [} 1 0 o [} 4 [} [} 0 1 0 2 [} [} ] [}
American Robin - 0 o 0o 0 0 0o 0 0 0 0 0 O O O 1 0 O 120
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Figure 18:Confusion Matrix of the MFCC Algorithm
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Figure 19: Confusion Matrix of the STFT Algorithm

However, this model struggles to generalize for underrepresented classes, such as the
Common Raven and Pine Siskin, where off-diagonal confusions are significant.These errors
indicate that the model favors majority classes, likely due to the data imbalance. While this

model is effective for overrepresented species, it lacks robustness in handling rare species.

The STFT-based model shows slightly lower performance compared to the MFCC-based
model. Although it maintains a certain level of accuracy for majority classes, such as Black-
capped Chickadee (122) and Black-billed Magpie (120), it exhibits more off-diagonal
confusions, particularly for species like the American Crow and Red-breasted Nuthatch. This
could be attributed to the model's difficulty in extracting complex temporal and spectral
features from the audio signals. This limitation affects not only the model's ability to
generalize but also its overall accuracy, making it less suitable for complex or imbalanced

data.

Finally, the model using log-Mel features combined with EfficientNetV2 stands out
significantly in terms of overall performance. The correct predictions along the diagonal are
substantially higher for almost all classes, such as Black-capped Chickadee (224), Black-
billed Magpie (223), and American Robin (199). Additionally, this model handles complex
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and underrepresented classes, such as Dark-eyed Junco and Mountain Chickadee, with fewer
off-diagonal confusions. This can be explained by the powerful combination of log-Mel
features, which capture fine spectral and perceptual information, and the advanced
EfficientNetV2 architecture, optimized for classifying spectrogram-derived images.This
combination enables the model to generalize better and handle data imbalances more

effectively.

The MFCC-based model performs well for majority classes and the STFT model offers some
stability, the log-Mel model with EfficientNetV2 stands out as the most suitable for this task.
It balances accuracy and generalization while reducing confusions for underrepresented

classes, making it particularly robust for scenarios involving complex and imbalanced data.

2. Decisionmaking

The choice of the algorithm depends on the specific classification objectives, data
constraints, and available resources. Among the three tested models, the MFCC-based model
offers the highest overall accuracy, particularly for majority classes, while requiring relatively
modest computational resources. This model is ideal for contexts where simplicity and

execution speed are paramount.
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Figure 20: Confusion Matrix of the LLog-Mel spectrograms and EfficientNetV2

Algorithm

The STFT-based model, despite providing a rich spatiotemporal representation, shows overall
lower performance due to its increased sensitivity to class imbalances and higher
computational demands.In contrast, the model combining log-Mel spectrograms and
EfficientNetV2 stands out for its robustness and generalization capability, thanks to the use of

a pre-trained feature extractor. This model is particularly suited for complex environments or

limited data, where species diversity and accuracy are crucial.

Therefore, the choice of the algorithm should be guided by a balance between accuracy,

robustness, and operational constraints, with EfficientNetV2 being recommended for

applications requiring strong generalization and diverse recordings.
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IX. DISCUSSION

The results obtained in this study show that deep learning methods applied to the
classification of bird songs offer promising performance while highlighting several challenges
inherent to this type of task. The combination of MFCCs, STFT, and log-Mel spectrograms
with neural network architectures, such as EfficientNetV2, allowed us to evaluate the

advantages and limitations of these approaches (Das et al, 2023).

Among the three tested algorithms, the MFCC-based model proved to be the most effective in
terms of overall accuracy (85%), demonstrating a better ability to capture the essential
acoustic features of bird songs. However, this method remains limited by a reduced ability to
differentiate underrepresented species or species recorded in noisy environments, such as the

Red-breasted Nuthatch or the Ruby-crowned Kinglet.

The STFT-based model, although effective for certain specific species, showed overall lower
performance (average accuracy of 71% and F1-score of 51%). This result can be attributed to
the difficulty of fully exploiting complex spatiotemporal information, combined with

increased sensitivity to class imbalance.

In contrast, the model combining log-Mel spectrograms and EfficientNetV2 demonstrated
greater robustness to spectral and temporal variations, largely thanks to the pre-trained feature
extractor, as previously observed by Das et al (2023). Despite slightly lower performance
compared to the MFCC model (average accuracy of 78%), this approach stands out for its

ability to generalize across complex and diverse data.

Our analyses also highlighted the critical importance of data quality and balance (Reze '15
2024; Stowell &Plumbley, 2014). Data cleaning and augmentation steps significan

improved the algorithms' performance, particularly for the MFCC model, whose accuracy
increased from 66% to 83%. However, class imbalance remains a major challenge, especially
for rare or underrepresented species (Rezaul, 2024). Adjustments such as reducing the number
of recordings for overrepresented species while preserving rare species helped to limit biases
without altering the ecological diversity of the dataset. These results underscore the

importance of tailored strategies to manage these imbalances.

Moreover, although automated deep learning-based approaches have proven effective, they

require a large volume of high-quality data to achieve optimal performance (Zhang et al.,
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2018). The algorithms used in this study showed limitations in contexts of low class
representativity or significant noise in the recordings. Additional techniques, such as synthetic
data augmentation or the use of alternative acoustic representations (alternatives to STFT),
could be explored to further improve performance (Das et al, 2023).Furthermore, other
improvements could have been implemented, such as adding class weights to the STFT and
log-Mel models with EfficientNetV2, as well as using a common training set (80%-20%) to

better compare our algorithms.

The main limitation of our algorithms is that they detect only one bird species at a time. It
would be relevant to design a model capable of detecting multiple species simultaneously
(Springer et al., 2013).When an audio recording contains multiple bird species, the algorithm
arbitrarily selects one species without explicitly defining the underlying criteria. This choice
could be influenced by factors such as the dominant frequency or the prevalence of certain

species in the training set.

X. Conclusion

This study implemented deep learning approaches to classify the songs of 20 bird species
within the Cochrane Ecological Institute reserve. By using three main techniques—MFCC,
STFT, and log-Mel spectrograms combined with EfficientNetV2—we compared their

performance in terms of accuracy, generalization, and the ability to handle class imbalances.

The MFCC-based model stood out for its overall accuracy, demonstrating its effectiveness in
capturing essential acoustic features. The EfficientNetV2 model, on the other hand, showed
better generalization due to its pre-trained architecture, while the STFT model presented more
limited results. The data cleaning and augmentation steps played a key role in improving the

quality and diversity of the dataset, thereby increasing the models' accuracy.

These results highlight the importance of data quality, managing class imbalances, and
tailoring methods to the specificities of acoustic recordings. By combining robust approaches
with appropriate data preparation techniques, this study paves the way for effective automated

tools for bird song recognition.
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Future work could focus on enabling multi-species recognition from single recordings, real-
time audio processing, and integrating environmental data to enhance model performance.
These advancements would further support biodiversity monitoring and conservation efforts

globally.
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